Opción A

Ejercicio nº 1 de la Opción A de Junio (modelo 2) de 2007

[2'5 puntos] Determina dos números reales positivos sabiendo que su suma es 10 y que el producto de sus cuadrados es máximo.

Solución

```
Es un problema de optimización, sean x e y los dos números Relación x + y = 10.
```

Optimizar $P = x^2 \cdot y^2$

De x + y = 10, tengo y = 10 - x, luego P = $x^2 \cdot y^2 = P = x^2 \cdot (10 - x)^2 = x^2 \cdot (100 - 20x + x^2) = x^4 - 20x^3 + 100x^2$.

 $P(x) = x^4 - 20x^3 + 100x^2$. Calculamos P'(x), resolvemos P'(x) = 0 que serán los posibles máximos o mínimos (con P''(x) veremos si es máximo o mínimo).

 $P(x) = x^4 - 20x^3 + 100x^2$.

 $P'(x) = 4x^3 - 60x^2 + 200x$.

P'(x) = 0, da $4x^3 - 60x^2 + 200x = 0 = x(4x^2 - 60x + 200) = 0$, de donde x = 0 y $4x^2 - 60x + 200 = 0$.

Simplificando $x^2 - 15x + 50 = 0$. Al resolverla sale x = 10 y x = 5.

Los posibles máximos o mínimos son 0, 5 y 10.

 $P''(x) = 12x^2 - 120x + 200$

Como P''(0) = 200 > 0, x = 0 es un mínimo relativo.

Como P''(10) = 200 > 0, x = 10 es un mínimo relativo.

Como P''(5) = -100 < 0, x = 5 es un máximo relativo.

Los números son x = 5 e y = 10 - 5 = 5.

Ejercicio nº 2 de la Opción A de Junio (modelo 2) de 2007

Sean f: R \rightarrow R y g: R \rightarrow R las funciones definidas mediante f(x) = $x^3 + 3x^2$ y g(x) = x + 3.

(a) [1'25 puntos] Esboza las gráficas de f y de g calculando sus puntos de corte.

(b) [1'25 puntos] Calcula el área de cada uno de los recintos limitados entre las gráficas de f y g.

Solución

(a)

 $f(x) = x^3 + 3x^2$ y g(x) = x + 3.

g(x) = x + 3 es una recta y con dos puntos es suficiente para dibujarla

Para x = 0, g(0) = 3. Punto (0,3)

Para g(x) = 0, x + 3 = 0, de donde x = -3. Punto (-3,0)

 $f(x) = x^3 + 3x^2$ es un cúbica.

Cortes f(0) = 0. Punto (0,0)

Para f(x) = 0, $x^3 + 3x^2 = 0 = x^2(x + 3x)$, de donde x = 0 (doble) $y = x^2 = 3$. Puntos (-3,0) $y = x^2 = 3$.

 $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} (x^3 + 3x^2) = \lim_{x\to\infty} (x^3) = -\infty$. Es decir cuando x es muy grande negativo, f(x) es muy grande negativo.

 $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} (x^3 + 3x^2) = \lim_{x\to +\infty} (x^3) = +\infty$. Es decir cuando x es muy grande positivo, f(x) es muy grande positivo.

Las soluciones de f'(x) = 0 son los extremos relativos.

 $f(x) = x^3 + 3x^2$.

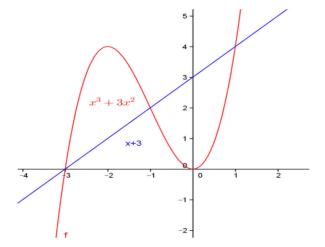
 $f'(x) = 3x^2 + 6x = 0 = x(3x + 6)$, de donde x = 0 y x = -2 son los extremos relativos.

f''(x) = 6x + 6

Como f "(0) = 6 > 0, x = 0 es un mínimo relativo que vale f(0) = 0.

Como f "(-2) = -6 < 0, x = -2 es un máximo relativo que vale f(-2) = 4.

Un esbozo de las gráficas es (en azul la recta g(x) y en rojo la cúbica f(x))



(b)

$$f(x) = x^3 + 3x^2$$
 y $g(x) = x + 3$.

Para hallar el área encerrada entre las dos funciones tenemos que ver los puntos de corte, para lo cual igualamos las funciones.

$$f(x) = g(x)$$
, $x^3 + 3x^2 = x + 3$, $x^3 + 3x^2 - x - 3 = 0$.

Por Ruffini se ve que x = 1 es una solución, luego $x^3 + 3x^2 - x - 3 = 0 = (x - 1)(x^2 + 4x + 3)$.

Resolviendo $x^2 + 4x + 3 = 0$ obtenemos x = -3 y x = -1, luego f y g se cortan en -3, -1 y 1.

Area =
$$\int_{-3}^{-1} (f(x) - g(x)) dx + \int_{-1}^{1} (g(x) - f(x)) dx =$$

= $\int_{-3}^{-1} (x^3 + 3x^2 - x - 3) dx + \int_{-1}^{1} (-x^3 - 3x^2 + x + 3) dx =$
= $\left[\frac{x^4}{4} + x^3 - \frac{x^2}{2} - 3x \right]_{-3}^{-1} + \left[-\frac{x^4}{4} - x^3 + \frac{x^2}{2} + 3x \right]_{-1}^{1} =$
= $\left[(1/4 - 1 - 1/2 + 3) - (81/4 - 27 - 9/2 + 9) \right] + \left[(-1/4 - 1 + 1/2 + 3) - (-1/4 + 1 + 1/2 - 3) \right] = 4 + 4 = 8 \text{ u}^2$

Ejercicio nº 3 de la Opción A de Junio (modelo 2) de 2007

Considera la matriz $A = \begin{pmatrix} 1 & -1 \\ 1 & \lambda \end{pmatrix}$.

- (a) [1 punto] Determina la matriz $B = A^2 2A$
- (b) [0'75 puntos] Determina los valores de λ para los que la matriz B tiene inversa.
- (c) [0'75 puntos] Calcula B⁻¹ para λ = 1

Solución

$$A = \begin{pmatrix} 1 & -1 \\ 1 & \lambda \end{pmatrix}$$

$$\mathsf{B} = \mathsf{A}^2 - 2\mathsf{A} = \begin{pmatrix} 1 & -1 \\ 1 & \lambda \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 1 & \lambda \end{pmatrix} - 2 \begin{pmatrix} 1 & -1 \\ 1 & \lambda \end{pmatrix} = \begin{pmatrix} 0 & -1 - \lambda \\ 1 + \lambda & -1 + \lambda^2 \end{pmatrix} - \begin{pmatrix} 2 & -2 \\ 2 & 2\lambda \end{pmatrix} = \begin{pmatrix} -2 & 1 - \lambda \\ -1 + \lambda & \lambda^2 - 2\lambda - 1 \end{pmatrix}$$

(b)

B tiene inversa si $det(B) \neq 0$

$$\det(B) = |B| = \begin{vmatrix} -2 & 1 - \lambda \\ -1 + \lambda & \lambda^2 - 2\lambda - 1 \end{vmatrix} = -2\lambda^2 + 4\lambda + 2 - (1 - \lambda)(-1 + \lambda) = -\lambda^2 + 2\lambda + 3$$

Resolviendo $-\lambda^2 + 2\lambda + 3 = 0$ obtenemos $\lambda = -1$ y $\lambda = 3$, por tanto si $\lambda \neq -1$ y $\lambda \neq 3$ la matriz B tiene inversa. (c)

$$B^{-1} \ con \ \lambda = 1; \ B^{-1} = (1/|B|).Adj(B^t); \ Con \ \lambda = 1, \ B = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}; \ det(B) = 4; \ B^t = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix};$$

$$Adj(B^{t}) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}; B^{-1} = (1/|B|).Adj(B^{t}) = \frac{1}{4} \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} -1/2 & 0 \\ 0 & -1/2 \end{pmatrix}$$

Ejercicio nº 4 de la Opción A de Junio (modelo 2) de 2007

Considera los planos de ecuaciones x - y + z = 0 y x + y - z = 2.

- (a) [1 punto] Determina la recta que pasa por el punto A(1,2,3) y no corta a ninguno de los planos dados.
- (b) [1'5 puntos] Determina los puntos que equidistan de A(1,2,3) y B(2,1,0) y pertenecen a la recta intersección de los planos dados.

Plano x - y + z = 0, vector normal $\mathbf{n} = (1,-1,1)$

Plano y x + y - z = 2, vector normal **n**' = (1,1,-1)

Como los vectores normales n y n' no son proporcionales, los planos son secantes y se cortan en una recta

r de ecuación
$$r = \begin{cases} x - y + z = 0 \\ x + y - z = 2 \end{cases}$$

Como me piden una recta que no corte a ninguno de los dos planos lo que me están pidiendo es una recta "s" paralela a la recta "r", luego me sirve como vector director el de la recta "r" que es el producto vectorial de **n** con **n**'.

Recta "s", punto el A(1,2,3), vector
$$\mathbf{u} = \mathbf{n} \times \mathbf{n}' = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = \mathbf{i}(1-1) - \mathbf{j}(-2) + \mathbf{k}(2) = (0,2,2)$$

La recta "s" en paramétricas es $\begin{cases} x = 1 \\ y = 2 + 2t \\ z = 3 + 2t \end{cases}$

(b)

Los planos x - y + z = 0 y x + y - z = 2, son secantes y ya sabemos que se cortan en la recta r de ecuación $r = \begin{cases} x - y + z = 0 \\ x + y - z = 2 \end{cases}$, que tenía de vector director $\mathbf{u} = \mathbf{n} \times \mathbf{n}' = (0,2,2)$.

Un punto E de "r" lo obtenemos tomando z = 0, con lo cual resolviendo el sistema de la recta "r" obtenemos x = y = 1. El punto E es E(1,10)

Ponemos la recta "r" en paramétricas para tomar un punto genérico C de la recta "r"

Recta "r" en paramétricas
$$r \equiv \begin{cases} x = 1 \\ y = 1 + 2t \end{cases}$$
. El punto genérico C de "r" es C(1, 1+2t, 2t). $z = 2t$

Como dicen que los puntos A(1,2,3) y B(2,1,0) equidistan de la recta "r", equidistan de un punto genérico suyo, el C, es decir d(A,C) = d(B,C) (las distancias son iguales)

$$d(A,C) = |AC| = \sqrt{0^2 + (-1 + 2t)^2 + (-3 + 2t)^2}$$

$$AC = (1 - 1, 1 + 2t - 2, 2t - 3) = (0, -1 + 2t, -3 + 2t)$$

$$d(B,C) = |BC| = \sqrt{1^2 + (2t)^2 + (2t)^2}$$

BC =
$$(1 - 2, 1 + 2t - 1, 2t - 0) = (1, 2t, 2t)$$

Igualando tenemos $\sqrt{0^2 + (-1 + 2t)^2 + (-3 + 2t)^2} = \sqrt{1^2 + (2t)^2 + (2t)^2}$. Elevando al cuadrado y simplificando obtenemos 16t = 9, de donde t = 9/16, y los puntos de la recta "r" que equidistan de A y B es solo uno el C(1,1+2(9/16),2(9/16)) = C(1,17/8,9/8).

Opción B

Ejercicio nº 1 de la Opción B de Junio (modelo 2) de 2007

[2'5 puntos] Sea f : R \rightarrow R la función definida por f(x) = 2x³ + 12x² + ax + b. Determina a y b sabiendo que la recta tangente a la gráfica de f en su punto de inflexión es la recta y = 2x + 3.

Solución

$$f(x) = 2x^3 + 12x^2 + ax + b$$

Los puntos de inflexión verifican f''(x) = 0

$$f'(x) = 6x^2 + 24x + a$$

f''(x) = 12x + 24, de f''(x) = 0 obtenemos x = -2 que es el punto de inflexión.

La recta tangente en x = -2 es y - f(-2) = f'(-2)(x + 2)

También me dicen que la recta tangente en x = -2 es y = 2x + 3, por tanto f'(-2) = 2.

De f'(-2) = 2, tengo 2 = $6(-2)^2 + 24(-2) + a$. Operando obtenemos a = 26.

De a recta tangente y - f(-2) = f'(-2)(x + 2), tenemos y = f(-2) + 2(x+2) = 2x + (4 + f(-2)). Igualando esta ecuación con la recta tangente y = 2x + 3 tenemos: 3 = 4 + f(-2), de donde f(-2) = -1.

De f(-2) = -1, tengo $-1 = 2(-2)^3 + 12(-2)^2 + (26)(-2) + b$. Operando obtenemos b = 19.

La función es $f(x) = 2x^3 + 12x^2 + 26x + 19$.

Ejercicio nº 2 de la Opción B de Junio (modelo 2) de 2007

[2'5 puntos] Dada la función $f: R \to R$ definida por $f(x) = Ln(1 + x^2)$, halla la primitiva de f cuya gráfica pasa por el origen de coordenadas. (Ln denota la función logaritmo neperiano).

Solución

Una primitiva de f(x) es $F(x) = \int f(x)dx + K$

 $I = \int f(x)dx = \int Ln(1+x^2)dx$ que es una integral por partes $(\int udv = uv - \int vdu)$

 $u = Ln(1 + x^2)$, de donde $du = (2x)/(1 + x^2)$

dv = dx, de donde $v = \int dx = x$

$$I = \int Ln(1+x^2)dx = x.Ln(1+x^2) - \int x.\frac{2x}{1+x^2}dx = x.Ln(1+x^2) - 2\int \frac{x^2}{1+x^2}dx = x.Ln(1+x^2) - 2I_1.$$

 $I_1 = \int \frac{x^2}{1+x^2} dx$, aunque sencilla es una integral racional (hay que dividir) o poner el numerador en la forma $x^2 = x^2 + 1 - 1$.

$$I_1 = \int \frac{x^2}{1+x^2} dx = \int \frac{x^2+1-1}{1+x^2} dx = \begin{cases} \text{diviendo por} \\ 1+x^2 \end{cases} = \int \left(1 + \frac{-1}{1+x^2}\right) dx = x - \operatorname{artag}(x)$$

 $I = x.Ln(1 + x^2) - 2I_1 = x.Ln(1 + x^2) - 2(x - artag(x))$

$$F(x) = \int f(x)dx + K = x.Ln(1 + x^2) - 2(x - artag(x)) + K.$$

Como nos dicen que la primitiva F(x) pasa por (0,0) tenemos F(0) = 0.

De F(0) = 0, tenemos 0 = 0.Ln(1 + 0) - 2(0 - artag(0)) + K = 0 + K, de donde K = 0 y la primitiva pedida es F(x) = x.Ln $(1 + x^2) - 2(x - artag(x))$

Ejercicio n° 3 de la Opción B de Junio (modelo 2) de 2007

- (a) [1 punto] Calcula la matriz inversa de $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.
- (b) [1'5 puntos] Escribe en forma matricial el siguiente sistema y resuélvelo usando la matriz A -1 hallada en el apartado anterior.

$$x + y = 1$$
$$y + z = -2$$
$$x + z = 3$$

Solución

(a)
$$A^{-1} = (1/|A|).Adj(A^{t})$$

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}; det(A) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} 3^{a}F + 1^{a}F(-1) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{vmatrix} = 1\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 1(1+1) = 2$$

$$A^{t} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \ Adj(A^{t}) = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}; \ A^{-1} = (1/|A|).Adj(A^{t}) = (1/2)\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$
(b)

El sistema
$$y+z=-2$$

 $x+z=3$ en forma matricial es A.X = B, con $A=\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $X=\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ y $B=\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

Como existe A^{-1} , multiplicando por la izquierda A.X = B por A^{-1} , tenemos $A^{-1}(A.X) = A^{-1}.B$

$$X = A^{-1}.B = (1/2)\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}.\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = (1/2)\begin{pmatrix} 6 \\ -4 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \text{ es decir la solución es } (x,y,z) = (3,-2,0)$$

Ejercicio nº 4 de la Opción B de Junio (modelo 2) de 2007

Considera los puntos A(0,3,-1) y B(0,1,5).

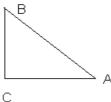
- (a) [1'25 puntos] Calcula los valores de x sabiendo que el triángulo ABC de vértices A, B y C(x,4,3) tiene un ángulo recto en C.
- (b) [1'25 puntos] Halla la ecuación del plano que pasa por los puntos (0,1,5) y (3,4,3) y es paralelo a la recta definida por las ecuaciones $\begin{cases} x y + z = 0 \\ 2x + y = 3 \end{cases}$.

Solución

(a)

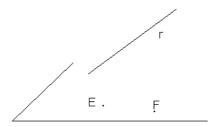
A(0,3,-1), B(0,1,5) y C(x,4,3)

Si el triángulo es rectángulo en C el producto escalar CA•CB es cero



CA = (-x, -1, -4); CB = (-x, -3, 2)

CA•CB = $x^2 + 3 - 8 = 0 \rightarrow x^2 = 5$, de donde $x = \pm \sqrt{5}$. Hay dos soluciones para "x".



Para un plano necesito un punto E(0,1,5) y dos vectores independientes el $\mathbf{EF} = (3-0, 4-1, 3-5) = (3,3,-2)$ y el

director de la recta "r", que es
$$\mathbf{u} = \mathbf{n} \times \mathbf{n}$$
" = $\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 1 \\ 2 & 1 & 0 \end{vmatrix} = \mathbf{i}(-1) - \mathbf{j}(-2) + \mathbf{k}(3) = (-1,2,3)$

Siendo n y n' los vectores normales de cada uno de los planos que determina la recta "r".

El plano pedido es **0 = det**(
$$\mathbf{x} - \mathbf{e}$$
, \mathbf{EF} , \mathbf{u}) = $\begin{vmatrix} x-0 & y-1 & z-5 \\ 3 & 3 & -2 \\ -1 & 2 & 3 \end{vmatrix} = x(9+4) - (y-1)(9-2) + (z-5)(6+3) = x(9+4) - (z-5)$

= 13x - 7y + 9z - 38 = 0.